Gold Nanostar@Polyaniline Theranostic Agent with High Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided Anticancer Phototherapy at a Low Dosage

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 19|浏览20
暂无评分
摘要
Due to the strong and tunable photothermal effect, metallic nanoparticles are of enormous interest in light-activated biomedical applications, such as photoacoustic imaging (PAI) and photothermal therapy (PTT). However, the photothermal conversion efficiency (PCE) of existing metallic photothermal agents is still unsatisfactory. Herein, we develop an efficient photothermal theranostic agent based on a gold nanostar@polyaniline core-shell nanocomposite with high PCE for PAI-guided PTT at a low dosage. After optimizing the relative composition of polyaniline (PANI) and gold nanostars (ALINSs), this nanocomposite eventually empowers an outstanding PCE of up to 78.6%, which is much better than AuNSs or PANI alone and most of the existing photothermal theranostic agents. Besides, the nanocomposite can act as a targeted probe for tumors by hyaluronic acid (HA) modification without compromising the photothermal performance. The obtained nanoprobes named AuNSPHs exhibit promising biocompatibility and great performance of PM-guided PTT to treat triple-negative breast cancer both in vitro and in vivo. More importantly, a single injection of AuNSPHs significantly suppresses tumor growth with a low dosage of Au (0.095 mg/kg), which is attributed to the high PCE of AuNSPHs. Taking advantage of the exhilarating photothermal conversion ability, this theranostic agent can safely potentiate the antitumor therapeutic efficacy of laser-induced ablation and holds great potential for future medical applications.
更多
查看译文
关键词
photothermal conversion efficiency, low dosage, theranostic, photothermal therapy, photoacoustic imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要