Loss of anthocyanidin synthase gene is associated with white flowers of Salvia miltiorrhiza Bge. f. alba, a natural variant of S. miltiorrhiza

PLANTA(2022)

引用 8|浏览6
暂无评分
摘要
Main conclusion SmANS deletion leads to white flower mutation in Salvia miltiorrhiza. SmANS deletion leads to white flower mutation in Salvia miltiorrhiza. Abstract Salvia miltiorrhiza is an essential traditional Chinese medicine (TCM) with purple flowers, and S. miltiorrhiza Bge. f. alba is a unique intraspecific variation with white flowers. The molecular mechanism of flower color formation in S. miltiorrhiza will provide vital information for the variation and evolution. Here, we performed HPLC, transcriptomic, and re-sequencing analyses of purple-flowered S. miltiorrhiza line 'Zihua105' (ZH105) and white-flowered S. miltiorrhiza Bge. f. alba line 'Baihua18' (BH18). Delphinidin was the most anthocyanidin in ZH105, which become the main different between ZH105 vs. BH18 flowers. Transcriptome analysis revealed 299 differentially expressed genes (DEGs). SmANS, the anthocyanidin synthase gene in the down-stream anthocyanin biosynthesis pathway, was significantly expressed in ZH105 corollas, suggesting it might play a key role in white petal formation. Whole-genome re-sequencing revealed that a 6.75 kb segment located on chromosome 5, which contains the complete sequence of the SmANS genes, was lost in BH18 and another S. miltiorrhiza Bge. f. alba line. In contrast, the other five purple-flowered S. miltiorrhiza lines both possessed this segment. Further molecular marker identification also confirmed that wild S. miltiorrhiza Bge. f. alba lines lost regions that contained a complete or important part of SmANS sequences. Subsequently, the research showed that the deletion mutant of SmANS genes resulted in the natural white flower color variant of S. miltiorrhiza.
更多
查看译文
关键词
Anthocyanin, HPLC, Transcriptome, Whole-genome re-sequencing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要