Continuous liquid interface production of 3D printed drug-loaded spacers to improve prostate cancer brachytherapy treatment

Acta Biomaterialia(2022)

引用 0|浏览7
暂无评分
摘要
Brachytherapy, which is the placement of radioactive seeds directly into tissue such as the prostate, is an important curative treatment for prostate cancer. By delivering a high dose of radiation from within the prostate gland, brachytherapy is an effective method of killing prostate cancer cells while limiting radiation dose to normal tissue. The main shortcomings of this treatment are: less efficacy against high grade tumor cells, acute urinary retention, and sub-acute urinary frequency and urgency. One strategy to improve brachytherapy is to incorporate therapeutics into brachytherapy. Drugs, such as docetaxel, can improve therapeutic efficacy, and dexamethasone is known to decrease urinary side effects. However, both therapeutics have high systemic side effects. To overcome this challenge, we hypothesized that we can incorporate therapeutics into the inert polymer spacers that are used to correctly space brachytherapy seeds during brachytherapy to enable local drug delivery. To accomplish this, we engineered 3D printed drug-loaded brachytherapy spacers using continuous liquid interface production (CLIP) with different surface patterns to control drug release. These devices have the same physical size as existing spacers, allowing them to easily replace commercial spacers. We examined these drug-loaded spacers using docetaxel and dexamethasone as model drugs in a murine model of prostate cancer. We found that drug-loaded spacers led to higher therapeutic efficacy for brachytherapy, and there was no discernable systemic toxicity from the drug-loaded spacers.
更多
查看译文
关键词
3D printing,continuous liquid interface production,brachytherapy,drug-loaded device,prostate cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要