Sodium butyrate modulates blood pressure and gut microbiota in maternal tryptophan-free diet-induced hypertension rat offspring.

The Journal of nutritional biochemistry(2022)

引用 13|浏览6
暂无评分
摘要
Maternal nutrition, gut microbiome composition, and metabolites derived from gut microbiota are closely related to the development of hypertension in offspring. A plethora of metabolites generated from diverse tryptophan metabolic pathways show both beneficial and harmful effects. Butyrate, one of the short-chain fatty acids (SCFAs), has shown vasodilation effects. We examined whether sodium butyrate administration in pregnancy and lactation can prevent hypertension induced by a maternal tryptophan-free diet in adult progeny and explored the protective mechanisms. Pregnant Sprague-Dawley rats received normal chow (CN), tryptophan-free diet (TF), sodium butyrate 400 mg/kg/d in drinking water (CNSB), or TF diet plus sodium butyrate (TFSB) in pregnancy and lactation. Male offspring were sacrificed at the age of 16 weeks (n=8 per group). Compared with normal chow, offspring exposed to the maternal tryptophan-free diet had markedly increased blood pressure, associated with activation of the renin-angiotensin system (RAS). Treatment with sodium butyrate rescued maternal TF-exposed offspring from hypertension. The protective effect of sodium butyrate is related to alterations to microbiome composition, increased renal expression of SCFA receptor G protein-coupled receptor 41 (GPR41) and GPR109A, and restoration of RAS balance. In summary, these results suggest that sodium butyrate protects against maternal TF-induced offspring hypertension, likely by modulating gut microbiota, its derived metabolites, and the RAS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要