Human iPSC-derived-keratinocytes, a useful model to identify and explore pathological phenotype of Epidermolysis Bullosa Simplex.

Journal of Investigative Dermatology(2022)

引用 2|浏览6
暂无评分
摘要

Abstract

Epidermolysis Bullosa Simplex (EBS), an autosomal dominant skin disorder, is characterized by skin fragility. Genetically, majority of cases are related to missense mutations in two keratin genes, KRT5 or KRT14, leading to cytolysis of basal keratinocytes and intraepidermal blistering. Progress towards identification of treatments have been hampered by incomplete understanding of the mechanisms underlying this disease, and availability of relevant and reliable in vitro models recapitulating the physiopathological mechanisms. Recent advances in stem cell field have fueled the prospect that these limitations could be overcome thanks to the availability of disease-specific human induced pluripotent stem cells (hiPSC). Here, we generated hiPSC-derived keratinocytes from patients carrying KRT5 dominant mutations and compared them to non-affected hiPSC-derived keratinocytes as well as their primary counterparts. Our results demonstrated that EBS hiPSC-derived keratinocytes displayed proliferative defects, increased capacity to migrate, alteration of ERK signaling pathway and cytoplasmic keratin filament aggregates as observed in primary EBS keratinocytes. Of interest, EBS hiPSC-derived keratinocytes exhibited a downregulation of hemidesmosomal proteins revealing the different effects of KRT5 mutations on keratin cytoskeletal organization. Combination of culture miniaturization and treatment with the chaperone molecule 4-PBA, our results demonstrated that hiPSC-derived keratinocytes represent a suitable model for identifying novel therapies for EBS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要