Three-dimensional photonic topological insulator without spin–orbit coupling

NATURE COMMUNICATIONS(2022)

引用 8|浏览16
暂无评分
摘要
Spin–orbit coupling, a fundamental mechanism underlying topological insulators, has been introduced to construct the latter’s photonic analogs, or photonic topological insulators (PTIs). However, the intrinsic lack of electronic spin in photonic systems leads to various imperfections in emulating the behaviors of topological insulators. For example, in the recently demonstrated three-dimensional (3D) PTI, the topological surface states emerge, not on the surface of a single crystal as in a 3D topological insulator, but along an internal domain wall between two PTIs. Here, by fully abolishing spin–orbit coupling, we design and demonstrate a 3D PTI whose topological surface states are self-guided on its surface, without extra confinement by another PTI or any other cladding. The topological phase follows the original Fu’s model for the topological crystalline insulator without spin–orbit coupling. Unlike conventional linear Dirac cones, a unique quadratic dispersion of topological surface states is directly observed with microwave measurement. Our work opens routes to the topological manipulation of photons at the outer surface of photonic bandgap materials.
更多
查看译文
关键词
Photonic crystals,Topological insulators,Topological matter,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要