Construction of the SHP-GLOX lignin regulation system and its application in rice straw

Plant Methods(2022)

引用 1|浏览4
暂无评分
摘要
Background There is great productivity of rice( Oryza sativa L. spp. japonica ) straw in China, which is a potential source of biomass for biofuel and forage. However, the high levels of lignins in rice straw limited its usage and induced the formation of agricultural waste. In order to modify the lignins contents to improve biofuel production and forage digestibility, we selected Soybean hull peroxidase (SHP) and Glyoxal oxidase (GLOX) as candidate genes to improve quality of rice straw. SHP, a class III plant peroxidase, is derived from multiple sources. It has several advantages, such as high resistance to heat, high stability under acidic and alkaline conditions, and a broad substrate range. SHP is speculated to be useful for lignin degradation. Glyoxal oxidase (GLOX) is an extracellular oxidase that can oxidize glyoxal and methylglyoxal in the extracellular medium to generate H 2 O 2 . Results In the present study, the SHP and GLOX genes in pCAMBIA3301-glycine-rich protein (GRP)-SHP-GLOX, designated the K167 vector, were optimized and introduced into rice embryos using Agrobacterium -mediated transformation. Positive transgenic rice embryos were examined using molecular, physiological, biochemical and fermentation tests. The outcomes suggested that SHP degraded lignin effectively. Conclusions This research has created a rice breeding material with normal growth and yield but stalks that are more amenable to degradation in the later stage for use in breeding rice varieties whose stalks are easily used for energy. Our results will improve the industrial and commercial applications of rice straw.
更多
查看译文
关键词
Agrobacterium-mediated transformation,Lignin,Soybean hull peroxidase,glyoxal oxidase,Transgenic rice,Fermentation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要