Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies

Mathias Gorski,Humaira Rasheed,Alexander Teumer,Laurent F Thomas,Sarah E Graham,Gardar Sveinbjornsson,Thomas W Winkler,Felix Günther,Klaus J Stark,Jin-Fang Chai,Bamidele O Tayo,Matthias Wuttke,Yong Li,Adrienne Tin,Tarunveer S Ahluwalia,Johan Ärnlöv,Bjørn Olav Åsvold,Stephan J L Bakker,Bernhard Banas,Nisha Bansal,Mary L Biggs,Ginevra Biino,Michael Böhnke,Eric Boerwinkle,Erwin P Bottinger,Hermann Brenner,Ben Brumpton,Robert J Carroll,Layal Chaker,John Chalmers,Miao-Li Chee,Miao-Ling Chee,Ching-Yu Cheng,Audrey Y Chu,Marina Ciullo,Massimiliano Cocca,James P Cook,Josef Coresh,Daniele Cusi,Martin H de Borst,Frauke Degenhardt,Kai-Uwe Eckardt,Karlhans Endlich,Michele K Evans,Mary F Feitosa,Andre Franke,Sandra Freitag-Wolf,Christian Fuchsberger,Piyush Gampawar,Ron T Gansevoort,Mohsen Ghanbari,Sahar Ghasemi,Vilmantas Giedraitis,Christian Gieger,Daniel F Gudbjartsson,Stein Hallan,Pavel Hamet,Asahi Hishida,Kevin Ho,Edith Hofer,Bernd Holleczek,Hilma Holm,Anselm Hoppmann,Katrin Horn,Nina Hutri-Kähönen,Kristian Hveem,Shih-Jen Hwang,M Arfan Ikram,Navya Shilpa Josyula,Bettina Jung,Mika Kähönen,Irma Karabegović,Chiea-Chuen Khor,Wolfgang Koenig,Holly Kramer,Bernhard K Krämer,Brigitte Kühnel,Johanna Kuusisto,Markku Laakso,Leslie A Lange,Terho Lehtimäki,Man Li,Wolfgang Lieb,Lars Lind,Cecilia M Lindgren,Ruth J F Loos,Mary Ann Lukas,Leo-Pekka Lyytikäinen,Anubha Mahajan,Pamela R Matias-Garcia,Christa Meisinger,Thomas Meitinger,Olle Melander,Yuri Milaneschi,Pashupati P Mishra,Nina Mononen,Andrew P Morris,Josyf C Mychaleckyj,Girish N Nadkarni,Mariko Naito,Masahiro Nakatochi,Mike A Nalls,Matthias Nauck,Kjell Nikus,Boting Ning,Ilja M Nolte,Teresa Nutile,Michelle L O'Donoghue,Jeffrey O'Connell,Isleifur Olafsson,Marju Orho-Melander,Afshin Parsa,Sarah A Pendergrass,Brenda W J H Penninx,Mario Pirastu,Michael H Preuss, Bruce M Psaty,Laura M Raffield,Olli T Raitakari,Myriam Rheinberger,Kenneth M Rice,Federica Rizzi,Alexander R Rosenkranz,Peter Rossing,Jerome I Rotter,Daniela Ruggiero,Kathleen A Ryan,Charumathi Sabanayagam,Erika Salvi,Helena Schmidt,Reinhold Schmidt,Markus Scholz,Ben Schöttker,Christina-Alexandra Schulz,Sanaz Sedaghat,Christian M Shaffer,Karsten B Sieber,Xueling Sim,Mario Sims,Harold Snieder,Kira J Stanzick,Unnur Thorsteinsdottir,Hannah Stocker,Konstantin Strauch,Heather M Stringham,Patrick Sulem,Silke Szymczak,Kent D Taylor,Chris H L Thio,Johanne Tremblay,Simona Vaccargiu,Pim van der Harst,Peter J van der Most,Niek Verweij,Uwe Völker,Kenji Wakai,Melanie Waldenberger,Lars Wallentin,Stefan Wallner,Judy Wang,Dawn M Waterworth,Harvey D White,Cristen J Willer,Tien-Yin Wong,Mark Woodward,Qiong Yang,Laura M Yerges-Armstrong,Martina Zimmermann,Alan B Zonderman,Tobias Bergler,Kari Stefansson,Carsten A Böger,Cristian Pattaro,Anna Köttgen,Florian Kronenberg,Iris M Heid

Kidney International(2022)

引用 19|浏览75
暂无评分
摘要
Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
更多
查看译文
关键词
acute kidney injury,chronic kidney disease,diabetes,gene expression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要