Tin perovskite solar cells with >1,300 h of operational stability in N2 through a synergistic chemical engineering approach

Joule(2022)

引用 88|浏览18
暂无评分
摘要
Despite the promising properties of tin-based halide perovskites, one clear limitation is the fast Sn+2 oxidation. Consequently, the preparation of long-lasting devices remains challenging. Here, we report a chemical engineering approach, based on adding Dipropylammonium iodide (DipI) together with a well-known reducing agent, sodium borohydride (NaBH4), aimed at preventing the premature degradation of Sn-HPs. This strategy allows for obtaining efficiencies (PCE) above 10% with enhanced stability. The initial PCE remained unchanged upon 5 h in air (60% RH) at maximum-power-point (MPP). Remarkably, 96% of the initial PCE was kept after 1,300 h at MPP in N2. To the best of our knowledge, these are the highest reported values for Sn-based solar cells. Our findings demonstrate a beneficial synergistic effect when additives are incorporated, highlight the important role of iodide in the performance upon light soaking, and, ultimately, unveil the relevance of controlling the halide chemistry for future improvement of Sn-based perovskite devices.
更多
查看译文
关键词
tin perovskite solar cells,light-soaking treatment,photoinduced trap-healing effect,ligand-to-metal charge transfer,photo-redox reactivity of tin and iodine,long-term device stability,photovoltaics,lead-free semiconductors,metal halide perovskites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要