Stabilizing magnetic skyrmions in constricted nanowires

Warda Al Saidi,Rachid Sbiaa

SCIENTIFIC REPORTS(2022)

引用 4|浏览2
暂无评分
摘要
Magnetic skyrmions are topologically-protected chiral nano-scale spin structures that offer low power and high-density functionalities for spintronic devices. They behave as particles that can be moved, created and annihilated. These characteristics make them promising information-carrying bits, hence a precise control of the skyrmion motion is essential. This study shows that stabilizing skyrmion is possible using a stepped nanowire geometry. The nanoconstriction dimension and materials properties are found to strongly affect the pinning, depinning and annihilation of the skyrmion. It is also observed that near the stepped region, the skyrmion slows down and its velocity changes direction before its stability. Moreover, a reduction of skyrmion size as it squeezes through the stepped region is observed. Our results will open a new strategy for the design and development of skyrmion-based devices.
更多
查看译文
关键词
Materials science,Nanoscience and technology,Physics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要