Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells

SCIENCE(2022)

引用 133|浏览16
暂无评分
摘要
To understand degradation routes and improve the stability of perovskite solar cells (PSCs), accelerated aging tests are needed. Here, we use elevated temperatures (up to 110 degrees C) to quantify the accelerated degradation of encapsulated CsPbI3 PSCs under constant illumination. Incorporating a two-dimensional (2D) Cs2PbI2Cl2 capping layer between the perovskite active layer and hole-transport layer stabilizes the interface while increasing power conversion efficiency of the all-inorganic PSCs from 14.9 to 17.4%. Devices with this 2D capping layer did not degrade at 35 degrees C and required >= 2100 hours at 110 degrees C under constant illumination to degrade by 20% of their initial efficiency. Degradation acceleration factors based on the observed Arrhenius temperature dependence predict intrinsic lifetimes of 51,000 +/- 7000 hours (>5 years) operating continuously at 35 degrees C.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要