In-situ biochar amendment mitigates dietary risks of heavy metals and PAHs in aquaculture products.

Yiqin Chen,Junrong Su, Hanyin Zhao,Juan-Ying Li, Jian Wang,Qian Wang, Jie Yin,Ling Jin

Environmental pollution (Barking, Essex : 1987)(2022)

引用 4|浏览10
暂无评分
摘要
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are two common contaminant groups of concern in aquaculture products. While biochar amendment can be one of the solutions to immobilize these contaminant in pond sediment, its in situ effectiveness in mitigating the bioavailability, tissue residue, and dietary risk of these contaminants is yet to be tested. In this study, we added wheat straw biochar in sediments of three aquaculture ponds with polyculture of fish and shrimps and employed passive sampling techniques (i.e., diffusive gradient in thin film for HMs and polydimethylsiloxane for PAHs) to assess the diffusion flux and bioavailability throughout the culturing cycle. Reduction in HM concentrations in organisms by biochar after 28 weeks ranged from 17% to 65% for benthic organisms and from 6.0% to 47% for fish. ΣTHQs values of HMs dropped from 2.5 to 2.1 and 1.2 to 0.91 for the two organisms with the initial ΣTHQs value above 1.0. The decrease rates of both the concentrations and ΣTHQs values followed the order of Cu > Cr > Pb > Cd, which was closely correlated with the speciation of HMs in the sediments. ΣPAHs values dropped significantly at the growth stage (20th week) and the mature stage (28th week), and, on average, by 34% across all the organisms. Carcinogenic PAHs in aquaculture products decreased dramatically at the seedling stage (12th week), while there was no significant change observed for the Incremental Lifetime Cancer Risk values. By comparing the freely-dissolved concentrations in pore water of sediments and the overlying water, consistently enhanced diffusion fluxes of HMs and PAHs from water to sediment over the whole culturing cycle were obtained. Our results demonstrated the in situ applicability of biochar amendment to remediating chemical pollution in aquaculture environment and safeguarding quality of aquatic products.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要