Role of Antioxidant Gene Polymorphisms in Risk and Prognosis of Chronic Myeloid Leukemia

Asian Pacific Journal of Cancer Biology(2021)

引用 2|浏览6
暂无评分
摘要
Introduction: We aimed to investigate the possible role of antioxidant enzyme polymorphisms CAT -21A/T (rs7943316), CAT -262C/T (rs1001179), GPX1 -198C/T (rs1050450), MPO -463G/A (rs2333227), GSTM1 (rs366631) & GSTT1 (rs17856199) with susceptibility to chronic myeloid leukemia (CML) and their association with tyrosine kinase inhibitor (TKI, imatinib) response. Methods: Six single nucleotide polymorphisms (SNPs) in antioxidant enzyme genes were genotyped in a total of 325 samples, of which 125 were from CML patients and 200 from healthy controls. The SNPs were correlated with various confounding variables lke BCR-ABL1 levels and tyrosine kinase domain mutation status in CML patients. Results: Genotyping results revealed statistically significant associations with CAT -21A/T (p=0.037) and GPX1 -198C/T (p=<0.0001) polymorphisms with risk of CML. No associations were observed between CAT -262C/T, MPO -463G/A, GSTM1 & GSTT1 polymorphisms and CML. The CAT -21A/T polymorphism conferred 2.95 folds increased risk of CML under co-dominant model (p=0.024) and 2.51 folds risk under dominant models (p=0.05). In addition, the haplotypes of CAT -21A/T and -262C/T polymorphisms, ATCC and ATCT conferred higher incidence of CML risk by 2.67 times (p=0.05) and 2.99 times (p=0.045). The GPX1 -198C/T polymorphism conferred significantly increased risk of CML under co-dominant model [CC vs CT (p=<0.0001), CC vs TT (p=<0.0001)] and dominant models [CC vs CT+TT (p=<0.0001)]. The heterozygous GPX1 CT genotype frequency significantly elevated in poor molecular responders (p=0.005) and TKD mutation carriers (p=0.114) as compared to respective groups. Conclusions: Our results suggest that the reduced activity of antioxidant enzymes caused by the CAT -21A/T and GPX1-198C/T polymorphisms might contribute to increased risk of CML. In addition, the GPX1-198C/T polymorphism was associated with poor molecular response and acquired TKD mutations. Hence, the present study indicates that defective antioxidant defense system might have a strong influence on CML susceptibility and TKI (imatinib) response through oxidative stress.
更多
查看译文
关键词
chronic myeloid leukemia, imatinib, resistance, antioxidant genes, polymorphism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要