Abstract 3015: Applications of immunohistochemistry in characterization of patient derived xenograft models

Cancer Research(2021)

引用 0|浏览6
暂无评分
摘要
Abstract Background: Well characterized patient derived xenograft models (PDX) are becoming the preferred pre-clinical tool in translational cancer research for biologic understanding of the disease, development of new treatments, and identifying potential therapy predictive and resistant biomarkers. Characterization of PDX models using a multi-omic approach is most desirable, however such efforts can be expensive and technically demanding. Immunohistochemistry (IHC) has become an indispensable ancillary tool in the accurate classification of tumor types, determination of cell of origin, identification of biologic properties like growth and metastatic potential, and evaluation for the presence/absence of therapeutic or prognostic biomarkers. Methods: 43 IHC assays were validated on the Leica Bond RX automated staining platform to identify common inconsistencies in PDX development including markers for classifying carcinomas, lymphomas, sarcomas, murine tumors, and theragnostic biomarkers. Rabbit antibodies are used rather than mouse antibodies to prevent non-specific staining of murine tissue. Results: 1. IHC evaluation of models within NCI's Patient Derived Models Repository (pdmr.cancer.gov) led to re-classification or sub-classification of 12 tumor models in accordance with WHO guidelines. 2. IHC evaluation of theragnostic markers in 8 breast cancer PDX models showed concordant results throughout passaging, suggesting stability of these biomarkers in our models. 3. We observe malignant transformation of murine or transplanted benign human tissue at a rate of 2.5%. On IHC analysis, 52% were human lymphomas, 20% were murine lymphomas, and 28% were other murine tumors. Conclusions: IHC is a rapid, cost-effective tool that can be used for accurate tumor classification, identifying subclonal outgrowth and tumor evolution, assessing stability of biomarkers and identifying malignant transformation of benign tissue. Funded by NCI Contract No. HHSN261200800001E ANTIBODYCLONEVENDORANTIBODYCLONEVENDORAndrogen Receptor[EPR1535(2)]abcamGATA3[EPR16651]abcamB-Catenin[E247]abcamGCDFP-15[EPR1582Y]abcamCD19polyclonalabcamGFAPpolyclonalDAKO/AgilentCD3polyclonalabcamHER2 ErbB2[SP3]abcamCD20[SP32]abcamKi-67[D2H10]Cell SignalingCD34[EP373Y]abcamKu80[EPR3468]abcamCD45polyclonalabcamMGMTMT3.1MilliporeCD56 (NCAM1)[EPR2566]abcamMitochondria Marker (Biotin)MTC02abcamCD68[EPR20545]abcamMyogenin[EPR4789]abcamCDX2[EPR2764Y]abcamNAPSIN A[EPR6252]abcamChromogranin A[SP12]abcamp63polyclonalGeneTexCK7 (purified)[EPR1619Y]abcamPD-1[EPR4877(2)]abcamCK19[EPR1580Y]abcamPD-L1 (CD274)RBT-PDL1LifeSpan BiosciencesCK20[EPR1622Y]abcamProgesterone Receptor[SP2]abcamCytokeratin wide spectrumpolyclonalabcamProstate Specific Antigen (PSA)[EP1588Y]abcamDesmin[Y66]abcamS100[EPR19013]abcamEBV LMP1[D24-G]abcamSmooth Muscle Actin (SMA)polyclonalabcamERG[EPR3864]abcamSynaptophysin[SP11]abcamEstrogen Receptor[SP1]abcamTTF1[SP141]abcamFOXP1monoclonalLifeSpan BiosciencesVimentin[EPR3776]abcamFOXP3(5H10L18)Invitrogen Citation Format: Lindsay Dutko, Gloryvee Rivera, Erin Cantu, Vishnuprabha Rahulkannan, Kelly Benauer, Tiffanie Chase, Emily Delaney, Jesse Stottlemyer, Chelsea McGlynn, Howard Stotler, John Carter, Suzanne Borgel, Michelle M. Gottholm Ahalt, Michelle Eugeni, Melinda Hollingshead, Yvonne Evrard, Chris Karlovich, Biswajit Das, Mickey Williams, James H. Doroshow, Shahanawaz Jiwani. Applications of immunohistochemistry in characterization of patient derived xenograft models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 3015.
更多
查看译文
关键词
immunohistochemistry,xenograft
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要