Experimental-numerical validation of the curing reaction of snap-cure polymer systems for component families of small batch sizes and high diversity

MATEC Web of Conferences(2021)

引用 0|浏览2
暂无评分
摘要
The efficient production of component families of small batch sizes and high diversity requires numerical analyses of manufacturing processes, especially for complex shaped components made of fibre-reinforced thermosets. In the case of snap-cure systems, curing takes place in a very short time and the exothermic reaction can lead to accumulation of heat and inhomogeneous curing. In order to achieve a reliable production of composite components, a numerical analysis of the curing process is necessary. Especially the practice-oriented and timesaving determination of the thermal conditions during the curing process is essential for the industrial application. Therefore, an experimental-numerical approach to predict the curing process was presented, which includes the analytical as well as the experimental determination of numerous thermal and thermochemical material parameters and models for snap-cure thermosets. The experimentally determined material parameters and models for the description of the material and structural behaviour are validated and evaluated by numerical simulations. In addition, the developed finite element models were used for the manufacturing process design of a complex component demonstrator.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要