Novel ligands of human cyp7 enzymes – possible modulators of cholesterol blood level: computer simulation studies

Book of Proceedings: 1st International Conference on Chemo and BioInformatics(2021)

引用 0|浏览29
暂无评分
摘要
Our in vitro studies showed that a couple of perspective steroidal derivatives showed previously biomedical potential via enzyme inhibition, receptor binding or antiproliferative effect against the cancer cells of reproductive tissues are able to bind to human CYP7 enzymes – key enzymes taking part in hydroxylation of cholesterol, 25-, 27-hydroxycholesterol and a number of steroidal hormones. In silico screening of binding affinity of the modified steroids toward CYP7 enzymes showed that interaction energy for the new ligands is comparable with consequent values, calculated for the ‘essential’ substrates of the enzymes – cholestenone (CYP7A1) and DHEA (CYP7B1). However, no correlation between binding energy and the affinity of the ligand was found. Novel ligands interact with conserved amino acids taking part in stabilization of natural substrates of CYP7 enzymes. A couple of structural features, governing ligand binding, were identified. Among which are planar structure of A-ring for CYP7A1 ligands, absence of many polar fragments in side-chain and presence of polar group at C3 position. Analysis of the docking results showed that CYP7B1 higher selectivity in comparison with CYP7A1 is connected by the structure of the cavity formed by α-helices I and B`. The data obtained will be used for the explanation of ligand specificity of human sterol- hydroxylases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要