<i>In situ</i> X-ray diffraction measurement of shock melting in vanadium

Acta Physica Sinica(2022)

引用 0|浏览3
暂无评分
摘要
The solid-liquid phase transition under shock wave loading in materials is called shock melting. Shock melting is important not only in fields like high pressure EOS or material dynamic response, but also in applications like device protection in modern industry and national defense construction. The obtaining of precise melting curve is more than understanding the high pressure melting behavior, and it can provide the reliable evidence for the theoretical model of melting mechanism. So the solid-liquid phase transition under extreme conditions is a research hotspot, and a lot of researches have been carried out. But, the enormous discrepancy between the melting curve of dynamic loading and hydrostatic loading in transition metals, especially, the vanadium has been unclear for decades. The difference in melting temperature under 200 GPa between dynamic loading and hydrostatic loadirng is as large as twice (about 4000 K). Recently, Errandonea and Zhang’s experiments present a new insight into this discrepancy, indicating that the new shock melting curve is consistent with the extrapolated melting curve contained by LH-DAC. But all the dynamic loading experimental data are measured by macroscopic quantities; they can determine the occurrence of the phase transition, but cannot provide the microscopic structure of the material under extreme conditions. So, as the technic of in situ X-ray diffraction has developed well in recent years, we use the high power laser driving technic combining with in situ X-ray diffraction measurement to explore the structure of vanadium near the melting line. We measure the micro structure of vanadium at up to 200 GPa in shock experiment for the first time. We find that the bcc phase transition is not observed at around 60 GPa, which is different from previous experiments in DAC or gas gun loading experiments, but consistent with Chen’s leaser driving experiment. The result confirms that when the impact pressure is 155 GPa, vanadium still remains solid BCC phase. It becomes liquid at about 190 GPa. In contract to Zhang’s results, the DXRD melting point is consistent with the new melting line. This work provides the evidence of the consistency of shock and hydrostatic melting curve, confirming the phase boundary of vanadium under 200 GPa. This work has important scientific significance in understanding the pressure melting behavior of transition metals. The method in this work can be applied to the research of melting properties of other materials.
更多
查看译文
关键词
shock melting,vanadium,x-ray
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要