Newly isolated Enterobacter cloacae sp. HN01 and Klebsiella pneumoniae sp. HN02 collaborate with self-secreted biosurfactant to improve solubility and bioavailability for the biodegradation of hydrophobic and toxic gaseous para-xylene.

Chemosphere(2022)

引用 5|浏览0
暂无评分
摘要
The gas-liquid mass transfer rate of hydrophobic volatile organic compounds (VOCs) is the limiting step in a biological treatment system. The present study aimed to utilize self-producing biosurfactants to enhance the bioavailability of hydrophobic gaseous VOCs. Two novel gram-negative rod-shaped bacteria, Enterobacter cloacae strain HN01 and Klebsiella pneumoniae strain HN02 were successfully isolated from sewage sludge by using blood agar and methylene blue agar plates. The two strains can use para-xylene (PX), a hydrophobic VOC model, as the only carbon source for biosurfactant production. Both strains can produce glycolipid biosurfactants, as confirmed by the emulsification index, Nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Results indicated that PX can be completely decomposed at an initial concentration of 15.50 mg L-1, pH value of 7.0, and temperature of 30 °C within 36 h. The Yano model is suitable for the prediction of the growth kinetics of strains over the entire PX concentration range. Gas chromatography/mass spectrometry analysis indicated that PX was converted into four and four intermediates in the presence of the strains HN01 and HN02, respectively, and the possible mechanisms were proposed. The results can be used in purifying industrial hydrophobic gaseous VOCs and improving the bioavailability of VOCs with self-produced biosurfactants.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要