Triboelectrification-Induced Electricity in Self-Healing Hydrogel for Mechanical Energy Harvesting and Ultra-sensitive Pressure Monitoring.

ACS OMEGA(2022)

引用 2|浏览6
暂无评分
摘要
Triboelectric nanogenerators (TENGs) have shown huge application potential in the fields of micro-nano energy harvesting and multifunctional sensing. However, the damage of triboelectric material is one of the challenges for their practical applications. Herein, we fabricated a flexible TENG employing self-healing hydrogel and fluorinated ethylene propylene film as triboelectric materials for mechanical energy harvesting and pressure monitoring. The prepared hydrogel not only has excellent flexibility, transparency, and self-healing property but also exhibits good mechanical property without plastic deformation and damage under a large stretchable strain of 200%. The output electric signals of TENGs are as high as 33.0 V and 3 μA under a contact frequency of 0.40 Hz and a pressure of 2.9 N, respectively, which can charge a capacitor of 0.22 μF to 24.3 V within 300 s. Note that the voltage retention rate of TENGs after self-healing is up to 88.0%. Moreover, hydrogel-based TENGs can act as a wearable pressure sensor for monitoring human motion, exhibiting a high sensitivity of 105.9 mV/N or 1.73 nA/N under a contact frequency of 0.40 Hz. This research provides a reference roadmap for designing TENGs and self-powered pressure sensors with flexibility, self-healing, and robustness.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要