Evaluation of antimicrobial, anticancer potential and Flippase induced leakage in model membrane of Centella asiatica fabricated MgONPs

Biomaterials Advances(2022)

引用 6|浏览0
暂无评分
摘要
The use of chemically synthesized nanoparticles and crude plant extracts as antimicrobial -anticancer agents have many limitations. In this study, we have used Centella asiatica extract (CaE) having relatively less explored but tremendous medicinal properties, as reducing and stabilizing agents to green synthesize magnesium oxide nanoparticles (MgONPs) using magnesium nitrate. In comparison to the bulk material, capabilities of Ca-MgONPs as an improved antibacterial, antifungal, and anticancer agent in human prostatic carcinoma cells (PC3), as well as membranolytic capability in model cell membrane, were studied. The phyto-functionalized Ca-MgONPs were characterized using UV–Visible spectroscopy (UV–Vis), Transmission Electron Microscopy (TEM), Energy Dispersive X-Ray Spectroscopy (EDX), X-ray Diffraction (XRD), Fourier Transform Infra-Red Spectroscopy (FT-IR) and Atomic Force Microscopy (AFM). Observation of characteristic peaks by spectroscopic and microscopic analysis confirmed the synthesis of Ca-MgONPs. The Ca-MgONPs showed broad spectrum of bactericidal activity against both gram-positive and gram-negative bacteria and fungicidal activity against two species of the Candida fungus. The Ca-MgONPs also exhibited dose-dependent and selective inhibition of proliferating PC3 cells with IC50 of 123.65 ± 4.82 μg/mL at 24 h, however, without having any cytotoxicity toward non-cancerous HEK293 cells. Further studies aimed at understanding the probable mechanism of toxicity of Ca-MgONPs in PC3 cells, the results indicated a significant reduction in cell migration capacities, increment in cytosolic ROS, loss of mitochondrial transmembrane potential, DNA damage and S-phase cell cycle arrest. Ca-MgONPs also induced pore formation in a synthetic large unilamellar vesicle. Thus, Ca-MgONPs might be useful in the effective management of several human pathogens of concern and some more cancer types.
更多
查看译文
关键词
Centella asiatica,MgONPs,Antimicrobial activity,Anticancer activity,Flippase,Membrane leakage,Cell cycle arrest
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要