Investigating the NLRP3 inflammasome and its regulator miR-223-3p in multiple sclerosis and experimental demyelination

JOURNAL OF NEUROCHEMISTRY(2022)

引用 3|浏览8
暂无评分
摘要
Innate immune signaling pathways are essential mediators of inflammation and repair following myelin injury. Inflammasome activation has recently been implicated as a driver of myelin injury in multiple sclerosis (MS) and its animal models, although the regulation and contributions of inflammasome activation in the demyelinated central nervous system (CNS) are not completely understood. Herein, we investigated the NLRP3 (NBD-, LRR- and pyrin domain-containing protein 3) inflammasome and its endogenous regulator microRNA-223-3p within the demyelinated CNS in both MS and an animal model of focal demyelination. We observed that NLRP3 inflammasome components and microRNA-223-3p were upregulated at sites of myelin injury within activated macrophages and microglia. Both microRNA-223-3p and a small-molecule NLRP3 inhibitor, MCC950, suppressed inflammasome activation in macrophages and microglia in vitro; compared with microglia, macrophages were more prone to inflammasome activation in vitro. Finally, systemic delivery of MCC950 to mice following lysolecithin-induced demyelination resulted in a significant reduction in axonal injury within demyelinated lesions. In conclusion, we demonstrate that NLRP3 inflammasome activity by macrophages and microglia is a critical component of the inflammatory microenvironment following demyelination and represents a potential therapeutic target for inflammatory-mediated demyelinating diseases, including MS.
更多
查看译文
关键词
inflammasome, macrophage, microglia, microRNA, multiple sclerosis, NLRP3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要