Plastics in scene: A review of the effect of plastics in aquatic crustaceans.

Environmental research(2022)

引用 9|浏览3
暂无评分
摘要
Plastic pollution in aquatic environments is present in all compartments from surface water to benthic sediment, becoming a topic of emerging concern due to the internalization, retention time, and its effects on aquatic biota. Crustacea with nearly 70,000 species, broad distribution and different roles in the trophic webs is a significant target of the increasing plastic pollution. At least 98 publications in the last 10 years report the impact of plastics in crustaceans, all suggesting that this taxon is at high risk for ecosystem disadvantage by plastic contamination loads. This review compiles the current knowledge on physiological effects (endpoints) by plastic contamination analyzed in crustaceans in the last 10 years, highlighting their use as model species for ecotoxicological tests, sentinels species and bioindicators. Plastic contamination analyzed in this review includes macroplastic, microplastic, and nanoplastic, in a wide variety of types. The studies were focused on 38 marine species with an economic interest in fisheries and aquaculture; 14 freshwater with a higher frequency in standard test species and 4 estuarial and 3 mangrove species with ecological interest. The publications reviewed were divided into studies describing plastic presence in crustaceans without reporting toxic effects and those with analysis of plastic toxicity. Publications describing the plastic presence in the organisms show that the ingestion in individual effects and food-web transfer in ecological effects were the most frequent endpoints. The publications that analyzed plastic toxicity through survival, nutrition-metabolism-assimilation, and reproduction in individual effects, and bioaccumulation in ecological effects were the most frequent endpoints. This review gathers the available information on the use of crustaceans as model species in environmental impact for toxicity screening and hazard assessment. Besides, identifying knowledge gaps will let us propose some future directions in research and the effects on target fisheries species which involves a possible effect on human health.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要