Specific recognition between YTHDF3 and m6 A-modified RNA: An all-atom molecular dynamics simulation study.

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS(2022)

引用 0|浏览14
暂无评分
摘要
The YTH domain of YTHDF3 belongs to a class of protein "readers" recognizing the N6-methyladenosine (m6 A) modification in mRNA. Although static crystal structure reveals m6 A recognition by a conserved aromatic cage, the dynamic process in recognition and importance of aromatic cage residues are not completely clear. Here, molecular dynamics (MD) simulations are performed to explore the issues and negative selectivity of YTHDF3 toward unmethylated substrate. Our results reveal that there exist conformation selectivity and induced-fit in YTHDF3 binding with m6 A-modified RNA, where recognition loop and loop6 play important roles in the specific recognition. m6 A modification enhances the stability of YTHDF3 in complex with RNA. The methyl group of m6 A, like a warhead, enters into the aromatic cage of YTHDF3, where Trp492 anchors the methyl group and constraints m6 A, making m6 A further stabilized by π-π stacking interactions from Trp438 and Trp497. In addition, the methylation enhances the hydrophobicity of adenosine, facilitating water molecules excluded out of the aromatic cage, which is another reason for the specific recognition and stronger intermolecular interaction. Finally, the comparative analyses of hydrogen bonds and binding free energy between the methylated and unmethylated complexes reveal the physical basis for the preferred recognition of m6 A-modified RNA by YTHDF3. This study sheds light on the mechanism by which YTHDF3 specifically recognizes m6 A-modified RNA and can provide important information for structure-based drug design.
更多
查看译文
关键词
dynamic process, N6-methyladenosine, specific recognition and interaction, YTHDF3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要