Privacy-Preserving Epidemiological Modeling on Mobile Graphs

arxiv(2022)

引用 0|浏览17
暂无评分
摘要
Over the last two years, governments all over the world have used a variety of containment measures to control the spread of COVID-19, such as contact tracing, social distance regulations, and curfews. Epidemiological simulations are commonly used to assess the impact of those policies before they are implemented in actuality. Unfortunately, their predictive accuracy is hampered by the scarcity of relevant empirical data, concretely detailed social contact graphs. As this data is inherently privacy-critical, there is an urgent need for a method to perform powerful epidemiological simulations on real-world contact graphs without disclosing sensitive information. In this work, we present RIPPLE, a privacy-preserving epidemiological modeling framework that enables the execution of a wide range of standard epidemiological models for any infectious disease on a population's most recent real contact graph while keeping all contact information private locally on the participants' devices. In this regard, we also present PIR-SUM, a novel extension to private information retrieval that allows users to securely download the sum of a set of elements from a database rather than individual elements. Our theoretical constructs are supported by a proof-of-concept implementation in which we show that a 2-week simulation over a population of half a million can be finished in 7 minutes with each participant consuming less than 50 KB of data.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要