A Kernelised Stein Statistic for Assessing Implicit Generative Models

NeurIPS 2022(2022)

引用 1|浏览57
暂无评分
摘要
Synthetic data generation has become a key ingredient for training machine learning procedures, addressing tasks such as data augmentation, analysing privacy-sensitive data, or visualising representative samples. Assessing the quality of such synthetic data generators hence has to be addressed. As (deep) generative models for synthetic data often do not admit explicit probability distributions, classical statistical procedures for assessing model goodness-of-fit may not be applicable. In this paper, we propose a principled procedure to assess the quality of a synthetic data generator. The procedure is a kernelised Stein discrepancy (KSD)-type test which is based on a non-parametric Stein operator for the synthetic data generator of interest. This operator is estimated from samples which are obtained from the synthetic data generator and hence can be applied even when the model is only implicit. In contrast to classical testing, the sample size from the synthetic data generator can be as large as desired, while the size of the observed data, which the generator aims to emulate is fixed. Experimental results on synthetic distributions and trained generative models on synthetic and real datasets illustrate that the method shows improved power performance compared to existing approaches.
更多
查看译文
关键词
Stein's method,kernel method,model assessment,generative models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要