Severe Muscle Deconditioning Triggers Early Extracellular Matrix Remodeling and Resident Stem Cell Differentiation into Adipocytes in Healthy Men

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2022)

引用 4|浏览8
暂无评分
摘要
Besides the loss of muscle mass and strength, increased intermuscular adipose tissue (IMAT) is now a well-recognized consequence of muscle deconditioning as experienced in prolonged microgravity. IMAT content may alter the muscle stem cell microenvironment. We hypothesized that extracellular matrix structure alterations and microenvironment remodeling induced by fast and severe muscle disuse could modulate fibro-adipogenic progenitor fate and behavior. We used the dry immersion (DI) model that rapidly leads to severe muscle deconditioning due to drastic hypoactivity. We randomly assigned healthy volunteers (n = 18 men) to the control group (only DI, n = 9; age = 33.8 +/- 4) or to the DI + thigh cuff group (n = 9; age = 33.4 +/- 7). Participants remained immersed in the supine position in a thermo-neutral water bath for 5 days. We collected vastus lateralis biopsies before (baseline) and after DI. 5 days of DI are sufficient to reduce muscle mass significantly, as indicated by the decreased myofiber cross-sectional area in vastus lateralis samples (-18% vs. baseline, p < 0.05). Early and late adipogenic differentiation transcription factors protein levels were upregulated. Platelet-derived growth Factors alpha (PDGFR alpha) protein level and PDGFR alpha-positive cells were increased after 5 days of DI. Extracellular matrix structure was prone to remodeling with an altered ECM composition with 4 major collagens, fibronectin, and Connective Tissue Growth Factor mRNA decreases (p < 0.001 vs. baseline). Wearing thigh cuffs did not have any preventive effect on the measured variable. Our results show that altered extracellular matrix structure and signaling pathways occur early during DI, a severe muscle wasting model, favoring fibro-adipogenic progenitor differentiation into adipocytes.
更多
查看译文
关键词
extracellular matrix, fibro-adipogenic progenitors, intermuscular adipose tissue, microenvironment, muscle wasting, severe muscle disuse, spaceflight
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要