Defense Mechanism of Bioinspired Composites with Sinusoidally Periodic Helicoidal Fiber Architectures

user-61447a76e55422cecdaf7d19(2022)

引用 2|浏览7
暂无评分
摘要
The fiber architectures of the stomatopod dactyl club lead to an effective toughening mechanism. Composites with sinusoidally periodic helicoidal (Herringbone-type) fiber architectures were fabricated using additive manufacturing and examined under dynamic loading. Under compression at different strain rates, stress distribution was found more uniform in the Herringbone-type structure than that in the Bouligand-type one because of fiber flattening. Under dynamic compression, Herringbone-type structures with amplitude gradients resisted large strains without significant damage, leading to greater energy absorption. Simulations indicated that the Herringbone-type structure mitigated the impact waves and facilitated uniform stress redistribution, whereas the Bouligand-type structure filtered the waves. These findings would shed light on the future designs of impact-resistant bioinspired materials.
更多
查看译文
关键词
Mantis shrimp,Bioinspired composites,Architecture,Dynamic behavior,Crashworthiness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要