Interfacial electronic modulation by Fe2O3/NiFe-LDHs heterostructures for efficient oxygen evolution at high current density

APPLIED CATALYSIS B-ENVIRONMENTAL(2022)

引用 117|浏览11
暂无评分
摘要
Designing and fabricating well-defined heterointerface catalysts with high electrocatalytic performance for oxygen evolution reaction (OER) at the industrial grade current density still remains a huge challenge. Here the flower-like nanosheets with rich Fe2O3/NiFe-layered double hydroxides (LDHs) heterointerfaces were fabricated, and they exhibit superior catalytic activity with a very low overpotential of 220 mV for OER at the industrial grade current density of 500 mA cm(-2) and fast reaction kinetics with a small Tafel slope of 32 mV dec(-1). Based on the analyses of operando Raman spectra, DFT theoretical calculations and electrochemical characterizations, the superior electrocatalytic performance of catalysts for OER at the industrial grade current density can be attributed to Fe2O3/NiFe-LDHs heterointerfaces that can obviously promote interfacial electron transfer from Ni2+ to Fe3+ and optimize d-orbit electronic configuration with e(g) occupancy of Ni close to the unity, resulting in moderate adsorption/desorption energies of oxygenated intermediates, and thus facilitating remarkably electrocatalytic performance and superior intrinsic kinetics for OER in alkaline media.
更多
查看译文
关键词
NiFe LDHs, Electronic modulation, Fe2O3, Oxygen evolution, Industrial current density
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要