DOSIMETRIC IMPACT OF TUMOR TREATING FIELDS TRANSDUCER ARRAYS ON CONCURRENT RADIATION THERAPY FOR PEDIATRIC BRAIN TUMORS

NEURO-ONCOLOGY(2022)

引用 0|浏览0
暂无评分
摘要
Abstract INTRODUCTION Early results suggest that tumor treating fields (TTF) concurrent with radiotherapy (RT) for glioblastoma yields acceptable dosimetry in adults; the impact on RT dose distribution in children is unknown. This study was undertaken to evaluate the dosimetric impact of TTF on concurrent photon RT for children with brain tumors. METHODS CT scans of an anthropomorphic pediatric head phantom (approximately 15-year-old) and an infant-head-sized spherical phantom were acquired with and without TTF attached. For each phantom, simulated supratentorial tumor targets were initially contoured on CT datasets acquired without TTF attached. Treatment plans using volumetric modulated arc therapy were created to deliver 60Gy and 50Gy to the gross tumor volume (GTV) and clinical tumor volume (CTV), respectively, in 30 fractions. The dose distributions of the same treatment plans were then re-computed with TTF attached. Target coverage metrics were compared between dose distributions with and without TTF. To measure skin dose, treatment plans were delivered with thermoluminescent dosimeters placed on the phantoms at various locations, with and without TTF attached. RESULTS The presence of TTF slightly reduced target coverage. For the two phantoms studied, D95 of the CTV was reduced by 0.65% and 1.03%, and D95 of the GTV was reduced by 0.7% and 1.05%, respectively. Electrodes under the direct beam path increased skin dose by an average of 43.3% (0.3Gy – 20.7Gy), but all skin dose measurements stayed within tolerances. TTF electrodes out of the RT field did not cause an increase in measured dose. CONCLUSIONS The dosimetric impact of TTF on pediatric head phantoms receiving concurrent RT resembles that reported in adult studies. Although the tumor dose is not significantly affected, the skin dose notably increases due to the bolus effect from the TTF electrodes, which may be mitigated by skin-sparing planning and shifting of the device during RT.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要