Voltage-Controlled Switching of Magnetic Anisotropy in Ambipolar Mn2CoAl/Pd Bilayers

PHYSICAL REVIEW APPLIED(2022)

引用 2|浏览3
暂无评分
摘要
An ultrahigh electric field induced by ionic liquid gating (ILG) can be employed to manipulate ferromagnetism with low Joule heating dissipation, showing great potential for spintronics applications. In ferromagnetic/heavy metal thin films, however, typical materials used in both layers are electron-carrier dominant, which significantly suppresses the ILG effect due to the short electrostatic screening length in metal. Here, we employ Mn2CoAl, a spin gapless semiconductor with hole carriers, as the ferromagnetic layer and investigate the ILG effect in MgO/Mn2CoAl/Pd ultrathin films with perpendicular magnetic anisotropy. Reversible change of the magnetic anisotropy from the out-of-plane to the in-plane direction is achieved, induced by electrostatic charge accumulation. Moreover, ambipolar transport behavior has been observed and explained by a two-carrier model. Finally, we find that skew scattering is the mechanism of the anomalous Hall effect and can be enhanced at a positive gate voltage in our system. Our results strongly demonstrate that a significant ILG effect on magnetism can be easily achieved in two-carrier dominant ultrathin films.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要