Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction

CHEMICAL ENGINEERING JOURNAL(2021)

引用 37|浏览6
暂无评分
摘要
Rational design of nanoscale structures can greatly strengthen heterogeneous catalysis with the maximal utilization of active sites. Single atom catalysts (SACs) are recently emerging but a systematic design of nanostructured SAC has rarely been demonstrated yet. Here, distinct architectural structure-dependence of electrochemical CO2 reduction (CO2RR) on Ni-based SACs is presented. Starting from Ni-imidazolate coordination polymers (Ni-Im) and their supported counterparts with a carbon nanotube (CNT) and a zeolite imidazolate framework (ZIF-8), the respective derivatives, i.e. Ni-SAC, Ni-SAC-CNT, and Ni-SAC-ZIF8, are obtained after pyrolysis. The presence of substrates ultimately results in large surface porous N-doped carbon nanostructures, which facilitate the diffusion of etchants to remove undesired Ni nanoparticles effectively. The dense Ni single atomic sites contained within the nanostructure are easily accessible to CO2 reactants during CO2RR, thus promoting high utilization of active sites even at large current densities. Electro-conductive CNT substrates mediate fluent charge transfer and stimulates the intrinsic activity of catalytic sites. Consequently, operating at 400 mA cm(-2), Ni-SAC-CNT attains a high faradaic efficiency of 99% toward CO at a low overpotential of 0.24 V, equivalent to a record cathodic energetic efficiency and turnover frequency of 83.4% and 439,000 h(-1), respectively.
更多
查看译文
关键词
Single atom catalyst, CO2 reduction, Carbon nanostructure, Electrochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要