Theranostic Effect of Folic Acid Functionalized MIL-100(Fe) for Delivery of Prodigiosin and Simultaneous Tracking-Combating Breast Cancer

JOURNAL OF NANOMATERIALS(2022)

引用 5|浏览2
暂无评分
摘要
The metal organic framework (MOF) member, MIL-100(Fe), is considered as attractive drug nanocarrier that may be due to the great porosity, colloidal stability, and biocompatibility. In the present study, the new electrochemical synthesis procedure was presented for MIL-100(Fe) building block, and secondly, folic acid (FA) was introduced to the structure for assessing its potential targeted ability to be entrapped by folic acid-positive breast cancer cells, MCF-7. Several techniques such as SEM, XRD, and FT-IR were used to characterize synthesized nanostructures. Both MIL-100(Fe) and MIL-100(Fe)/FA nanoparticles were between 50 to 200 nm with a slightly positive net charge with an area of 1350 and 831.84 m2/g, respectively. The prodigiosin (PG) is selected as a model drug for MIL-100(Fe) and MIL-100(Fe)/FA-targeted delivery owing to its natural fluorescence and cancer cell selectiveness. The loading capacity of both nanocarrier was around 40% with 93-97% loading efficacy. Moreover, the pH-sensitive prodigiosin release rate of MIL-100(Fe)@PG and MIL-100(Fe)/FA@PG showed that 69 to 73% of the drug was released after 24 hours in an acidic environment with around 20% unwanted leakage. The anticancer potential MIL-100(Fe)/FA cells showed the improvement of selective index (SI) from 3.21 to 12.48 which means that folic acid acts as an effective ligand. The study of cells treated with fluorescence microscopy and flow cytometry analysis reveals the dependence of the receptor on the nanoparticle through endocytosis. Considering the effects of nanoparticles on healthy cells, MIL-100(Fe) and MIL-100(Fe)/FA nanoparticles can be introduced as targeted drug delivery systems for smart targeting breast cancer cells with minimal side effects.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要