Effects of the NaCl Concentration and Montmorillonite Content on Formation Kinetics of Methane Hydrate

JOURNAL OF MARINE SCIENCE AND ENGINEERING(2022)

引用 6|浏览7
暂无评分
摘要
Most resources of natural gas hydrate (NGH) exist in marine sediments where salts and sea mud are involved. It is of great importance to investigate the effects of salts and sea mud on NGH formation kinetics. In this study, the mixture of silica sand and montmorillonite was used to mimic sea mud. The effects of the NaCl concentration of pore water and montmorillonite content on methane hydrate formation were studied. A low NaCl concentration of 0.2 mol/L and a low montmorillonite content range of 10-25 wt% is beneficial to reduce the induction time of hydrate formation. The high NaCl concentration and high content of montmorillonite will significantly increase the induction time. The average induction time for the experiments with the NaCl concentrations of 0, 0.2, 0.6, and 1.2 mol/L is 20.99, 8.11, 15.74, and 30.88 h, respectively. In the pure silica sand, the NaCl concentration of 0.2 mol/L can improve the final water conversion. In the experiments with pure water, the water conversion increases with the increase of the montmorillonite content due to the improvement of the dispersion of montmorillonite to water. The water conversion of the experiments in pure water with the montmorillonite contents of 0, 10, 25 and 40 wt% is 12.14% (+/- 1.06%), 24.68% (+/- 1.49%), 29.59% (+/- 2.30%), and 32.57% (+/- 1.64%), respectively. In the case of both montmorillonite and NaCl existing, there is a complicated change in the water conversion. In general, the increase of the NaCl concentration enhances the inhibition of hydrate formation and reduces the final water conversion, which is the key factor affecting the final water conversion. The average water conversion of the experiments under the NaCl concentrations of 0, 0.2, 0.6 and 1.2 mol/L is 24.74, 15.14, 8.85, and 5.74%, respectively.
更多
查看译文
关键词
methane hydrate, NaCl concentration, montmorillonite, hydrate formation kinetic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要