Low thermal-expansion and high proton uptake for protonic ceramic fuel cell cathode

Journal of Power Sources(2022)

引用 28|浏览21
暂无评分
摘要
Nowadays, the excessive thermal expansion behavior of Co-based electrode always leads to the cell degradation or delamination. Especially for BaCoO3-δ-type perovskite oxides, as the result of the large ionic radius of Ba2+ (1.61 Å), the phase structures of these materials are not stable. Herein, we developed a novel single-phase electrode Ba2Sc0.1Nb0.1Co1.5Fe0.3O6-δ (BSNCF) with a stable cubic perovskite structure and suitable thermal expansion coefficient (TEC, 11.9 × 10−6 K−1), which showed a great stability in symmetrical cell area specific resistances (ASRs) subjecting to the harsh thermal cycling procedure with 30 cycles between 300 °C and 600 °C (increased from 0.197 Ω cm2 to 0.222 Ω cm2,13% increase). The high-temperature hard X-ray absorption spectroscopy measurement directly monitored a small change of Co valence in BSNCF as the temperatures rising. Also, BSNCF exhibits well proton uptake for its appropriate oxygen-site basicity and excellent surface reaction activity. The single cell based on BSNCF achieved an outstanding peak power density of 977 mW cm−2 at 600 °C.
更多
查看译文
关键词
Cathode,Thermal expansion coefficient,Proton uptake,Cobalt-based perovskite oxides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要