Intensity scaling limitations of laser-driven proton acceleration in the TNSA-regime

S. Keppler, N. Elkina, G. A. Becker, J. Hein,M. Hornung,M. Mausezahl,C. Rodel, I Tamer,M. Zepf,M. C. Kaluza

PHYSICAL REVIEW RESEARCH(2022)

引用 6|浏览7
暂无评分
摘要
We report on experimental results on laser-driven proton acceleration using high-intensity laser pulses. We present power law scalings of the maximum proton energy with laser pulse energy and show that the scaling exponent 4 strongly depends on the scale length of the preplasma, which is affected by the temporal intensity contrast. At lower laser intensities, a shortening of the scale length leads to a transition from a square root toward a linear scaling. Above a certain threshold, however, a significant deviation from this scaling is observed. Two-dimensional particle-in-cell simulations show that, in this case, the electric field accelerating the ions is generated earlier and has a higher amplitude. However, since the acceleration process starts earlier as well, the fastest protons outrun the region of highest field strength, ultimately rendering the acceleration less effective. Our investigations thus point to a principle limitation of the proton energy in the target normal sheath acceleration regime, which would explain why a significant increase of the maximum proton energy above the limit of 100 MeV has not yet been achieved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要