A Simple Method to Obtain Protective Film against Acid Rain

INORGANICS(2022)

引用 0|浏览6
暂无评分
摘要
Acid rain is a major problem for animals, plants, buildings, and also for the top glass of photovoltaic (PV) solar panels and greenhouses. Air pollutants such as NOx, NH3, and H2S can mix with water in the atmosphere to form acid rain. It was discovered that atmospheric water vapor adsorbed on the surface of glass can also lead to corrosion of the glass surface. The purpose of this work is to obtain a protective film for glasses used in different domains such as solar cells, windows, stained glass windows from historical buildings, etc. Thin film deposited on glass must be protective against acid rain, transparent in the visible domain with a band gap up to 3.2 eV, and have a vitreous structure (glass). Electron beam (e-gun) technology is a deposition technique for producing high-purity and dense coatings in a short time. It is well known that Ta2O5 is an oxide with anticorrosive properties, but it is expensive and cannot form glass by itself. ZnO is an oxide known as a glass former, exhibiting good optical properties. In this paper, a thin film obtained by the deposition of ZnO and Ta2O5 on a glass substrate using e-gun technology are studied. The simulated acid rain effect on the structure, morphology, and optical properties of thin films are studied after a 65% nitric acid attack on the surface. The X-ray diffraction (XRD) pattern shows the vitreous state of the thin film with a composition 50%ZnO 50%Ta2O5 before and after the acid attack. The morphology, composition, and thickness of the film are investigated using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and profilometry.
更多
查看译文
关键词
ZnO, Ta2O5, thin film, corrosion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要