Effect of Solvent Motion on Ion Transport in Electrolytes

JOURNAL OF THE ELECTROCHEMICAL SOCIETY(2022)

引用 12|浏览6
暂无评分
摘要
We use concentrated solution theory to derive an equation governing solvent velocity in a binary electrolyte when a current passes through it. This equation, in combination with the material balance equation, enables the prediction of electrolyte concentration profiles and species velocities as a function of space and time. This framework is used to predict ion velocities in Li-Li symmetric cells containing a mixture of lithium bis(trifluoromethanesulfonyl)imide and poly(ethylene oxide) (LiTESI/PEO), for which the cation transference number relative to the solvent velocity, t(+)(0), can be either positive or negative, depending on salt concentration. Accounting for the solvent motion is increasingly important at higher concentrations. Especially for negative t(+)(0), if solvent velocity is set to zero, the cation velocity, based on the electrode-electrolyte interface reference frame, is pointed opposite to the current flow. However, when solvent motion is taken into account, the cation velocity, based on the same reference frame, is in the same direction as the current. This analysis demonstrates the importance of accounting for solvent velocity rigorously in seemingly simple systems such as symmetric cells. (C) 2022 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要