Identifying Shocked Feldspar on Mars Using Perseverance Spectroscopic Instruments: Implications for Geochronology Studies on Returned Samples

Earth, Moon, and Planets(2022)

引用 3|浏览5
暂无评分
摘要
The Perseverance rover (Mars 2020) mission, the first step in NASA’s Mars Sample Return (MSR) program, will select samples for caching based on their potential to improve understanding Mars’ astrobiological, geological, geochemical, and climatic evolution. Geochronologic analyses will be among the key measurements planned for returned samples. Assessing a sample’s shock history will be critical because shock metamorphism could influence apparent sample age. Shock effects in one Mars-relevant mineral class, plagioclase feldspar, have been well-documented using various spectroscopy techniques (thermal infrared reflectance, emission, and transmission spectroscopy, Raman, and luminescence). A subset of these data will be obtained with the SuperCam and SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) instruments onboard Perseverance to inform caching decisions for MSR. Here, we review shock indicators in plagioclase feldspar as revealed in Raman, luminescence, and IR spectroscopy lab data, with an emphasis on Raman spectroscopy. We consider how this information may inform caching decisions for selecting optimal samples for geochronology measurements. We then identify challenges and make recommendations for both in situ measurements performed with SuperCam and SHERLOC and for supporting lab studies to enhance the success of geochronologic analyses after return to Earth.
更多
查看译文
关键词
Mars sample return, Spectroscopy, Perseverance rover
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要