Fabrication of potassium ion decorated 1D/2D g-C3N4/g-C3N4 homojunction enabled by dual-ions synergistic strategy for enhanced photocatalytic activity towards degradation of organic pollutants

APPLIED SURFACE SCIENCE(2022)

引用 18|浏览5
暂无评分
摘要
The limited photocatalytic performance of g-C3N4 has become a bottleneck that restricts the widespread applications in degradation of organic pollutants. In this study, an efficient 1D/2D g-C3N4/g-C3N4 homojunction was constructed by the synergistic category of dual-ions induction in one pot fashion, integrating multi-advantages of homojunction and doping alkali metal potassium (K). Systematic characterizations confirmed the formation of K ion decorated 1D/2D homojunction structure, and revealed a possible fabrication mechanism. The photocatalytic performances were evaluated towards degrading rhodamine B (Rh B), and ciprofloxacin hydrochloride (CFH), respectively, representing dyeing and antibiotic wastewater treatment. Compared to pristine g-C3N4, the asmodified catalysts exhibited obvious activity enhancements in both photo-degradation reaction rates, and efficiencies of Rh B and CFH. Detailed information from DRS, ESR, PL results revealed that the obtained excellent performance might ascribe to the improvement of the separation of photogenerated carriers, the harvest of visible light, and the yields of active species. Moreover, the reaction mechanism and stability test were also studied in detail. This study provided a new category for constructing efficient and ion-doping homojunction structure for the enhancement of visible-light activity of g-C3N4 and would promote practical applications of solar energy and metal-free semiconductors.
更多
查看译文
关键词
g-C3N4, K doping, Homojunction, Photocatalytic degradation, Rhodamine B (Rh B), Ciprofloxacin hydrochloride (CFH)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要