Revisiting model’s uncertainty and confidences for adversarial example detection

Applied Intelligence(2022)

引用 10|浏览28
暂无评分
摘要
Security-sensitive applications that rely on Deep Neural Networks (DNNs) are vulnerable to small perturbations that are crafted to generate Adversarial Examples. The (AEs) are imperceptible to humans and cause DNN to misclassify them. Many defense and detection techniques have been proposed. Model’s confidences and Dropout, as a popular way to estimate the model’s uncertainty, have been used for AE detection but they showed limited success against black- and gray-box attacks. Moreover, the state-of-the-art detection techniques have been designed for specific attacks or broken by others, need knowledge about the attacks, are not consistent, increase model parameters overhead, are time-consuming, or have latency in inference time. To trade off these factors, we revisit the model’s uncertainty and confidences and propose a novel unsupervised ensemble AE detection mechanism that 1) uses the uncertainty method called SelectiveNet, 2) processes model layers outputs, i.e. feature maps, to generate new confidence probabilities. The detection method is called SFAD. Experimental results show that the proposed approach achieves better performance against black- and gray-box attacks than the state-of-the-art methods and achieves comparable performance against white-box attacks. Moreover, results show that SFAD is fully robust against High Confidence Attacks (HCAs) for MNIST and partially robust for CIFAR10 datasets. 1
更多
查看译文
关键词
Adversarial examples,Adversarial attacks,Adversarial example detection,Deep learning robustness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要