Coupled effect of TiO2-x and N defects in pyrolytic waste plastics-derived carbon on anchoring polysulfides in the electrode of Li-S batteries

ELECTROCHIMICA ACTA(2022)

引用 12|浏览2
暂无评分
摘要
Lithium-sulfur (Li-S) batteries have the potential to provide high energy density but they suffer from shuttling phenomena that are detrimental to cyclic stability in such a way that lithium polysulfides gradually diffuse out from the cathode interface. We employed the pyrolysis residue from waste plastics for a carbon source and applied it as a cathode sulfur host for Li-S batteries to limit the shuttle effect. Annealing with the aid of KOH and the subsequent ammonia thermal treatment endowed the residue with hierarchical porosity that reached 30% mesoporosity of the total pore volume. N-defects were significantly introduced in carbon networks with edge-positioned states, which helped them chemically interact with Li moieties in the polysulfides. Furthermore, titanium sub-dioxide (TiO2-x) was formed as impurities after the thermal treatment effectively suppressed diffusion of the intermediates. Based on the coupled effect of both N-defects and TiO2-x, the prepared carbon contributed to retarding the decay rate of discharge capacity, and its decay rate decreased to 0.089% per cycle at 1 C until 500 cycles with a capacity of higher than 500 mAh g(-1). This study offers a precedent for practical green design of waste plastic residues as a carbon source. (C)& nbsp;2022 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Pyrolytic waste plastics-derived carbon, N defect, <p>TiO2-x</p>, Lithium-sulfur battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要