Improving the properties of remanufactured wear parts of shield tunneling machines by novel Fe-based composite coatings

CERAMICS INTERNATIONAL(2022)

引用 7|浏览30
暂无评分
摘要
With the aim of remanufacturing high-value wear parts of shield tunneling machines, novel Fe-based composite coatings were prepared by collaborative modification with nano-TiC and nano-CeO2 particles. This work aims to improve the wear properties of Fe-based alloy coatings by regulating the morphology and dispersion of TiC through the addition of different contents of nano-TiC and nano-CeO2. First, the coatings with different contents of nano-TiC (from 5 wt% to 15 wt%) and nano-CeO2 (from 1 wt% to 2 wt%) were prepared by laser cladding. Subsequently, the microstructure, phase composition, microhardness, and wear properties of the coatings were examined. Furthermore, the wear morphology and the influence mechanism of nano-particles on the wear resistance of the coatings were investigated. It was found that the addition of nano-TiC eliminates the macro defects of Fe55 alloy coating. Meanwhile, the morphology and dispersion of TiC particles in coatings were affected by the content of nano-TiC and nano-CeO2. Specifically, the addition of 1 wt% nano-CeO2 facilitates to the formation of near-spherical tiny TiC particles with low agglomeration in the coating. Therefore, the Fe55 + 10 wt% nano-TiC+1 wt% nano-CeO2 coating exhibits the best wear property among all the prepared Fe-based coatings. This paper provides theoretical guidance for the preparation of the modified Fe-based coating with excellent wear resistance.
更多
查看译文
关键词
Laser cladding, Microstructure, Morphology, Dispersion, TiC particles, Wear resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要