Bulk-Material Bond Strength Exists in Extrusion Additive Manufacturing for a Wide Range of Temperatures, Speeds, and Layer Times

3D PRINTING AND ADDITIVE MANUFACTURING(2023)

引用 4|浏览3
暂无评分
摘要
Do extrusion temperature, printing speed, and layer time affect mechanical performance of interlayer bonds in material extrusion additive manufacturing (MEAM)? The question is one of the main challenges in 3D printing of polymers. This article aims to analyze the independent effect of printing parameters on interlayer bonding in MEAM. In previous research, printing parameters were unavoidably interrelated, such as printing speed and layer cooling time. Here, original specimen designs allow the effects to be studied independently for the first time to provide new understanding of the effects of a wide range of thermal factors on mechanical properties of 3D-printed polylactide. The experimental approach used direct GCode design to manufacture specially designed single-filament-thick specimens for tensile testing to measure mechanical and thermal properties normal to the interface between layers. In total, five different extrusion temperatures (a range of 60 degrees C), five different printing speeds (a 16-fold change in the magnitude) and four different layer times (an 8-fold change) were independently studied. The results demonstrate interlayer bond strength to be equivalent to that of the bulk material within experimental scatter. This study provides strong evidence about the crucial role of microscale geometry for apparent interlayer bond strength relative to the role of thermal factors. By designing specimens specifically for the MEAM process, this study clearly demonstrates that bulk-material strength can be achieved for interlayer bonds in MEAM even when printing parameters change severalfold. Widespread industrial and academic efforts to improve interlayer bonding should be refocused to study extrusion geometry-the primary cause of anisotropy in MEAM.
更多
查看译文
关键词
additive manufacturing,interface strength,extrusion temperature,printing speed,cooling time
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要