Highly efficient and selective removal of Pb2+ by ultrafast synthesis of HKUST-1: Kinetic, isotherms and mechanism analysis

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS(2022)

引用 13|浏览2
暂无评分
摘要
The relatively high cost, long synthesis duration and low adsorption capacity have limited the application of the primary metal-organic frameworks (MOFs) in the heavy metal removal. Herein, one-minute synthesized primary HKUST-1 MOF with excellent adsorption performance towards Pb2+ has been achieved. The adsorption equi-librium time and maximum uptake capacity of Pb2+ on HKUST-1were 60 min and 819.28 mg/g, respectively. Besides, HKUST-1 exhibited a stronger binding affinity to Pb2+ than the coexisting ions. The adsorption data fitted well with the pseudo-second order model (R-2 = 0.9962) and Langmuir model (R-2 = 0.9919), suggesting the adsorption behavior was dominated by monolayer chemisorption. Further, the destruction of HKUST-1 crystal structure after Pb2+ exposure and strong correlation between the released Cu2+ and adsorbed Pb2+ collectively confirmed the ion exchange could be the potential mechanism. Besides, the coordination interaction between Pb2+ and the free-standing carboxylate groups in the ligands of HKUST-1 also played an important role in the adsorption process. This work not only provides a new idea for Pb2+ removal by primary MOFs based on cation substitution, but also has great implications for constructing green and low-cost MOFs for the treatment of heavy metals contaminated water.
更多
查看译文
关键词
One-minute synthesis, HKUST-1, Pb2+ adsorption, Adsorption mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要