Thickness Variation Effects on the Efficiency of Simulated Hybrid Cu2ZnSnS4-Based Solar Cells Using SCAPS-1D

BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY(2022)

引用 1|浏览1
暂无评分
摘要
This study presents the simulations of a hybrid Cu2ZnSnS4-based solar cell with a planar heterojunction structure in a hybrid model (n-FTO/n-ZnO/p-PSCS/p-CZTS/p-PSCS/p-HTM) using a One-Dimensional Solar cell capacitance simulator (SCAPS-1D).. The configuration "121" of the hybridizing absorber layers of the device was simulated and related with as-Copper Zinc Tin Sulphide (CZTS). The simulation used an absorber layer with a step-length thickness of 25 nm and thicknesses ranging from 100 nm to 500 nm. The bandgap diagram, I-V characteristics curve, percentage conversion efficiencies, and the quantum efficiencies of the simulated solar cells were calculated and constructed from simulated results. The percentage conversion efficiency of 22.57%, fill factor of 49.99%, open-circuit voltage of 0.80V, and short circuit current of 25.12 mAcm(-2) were obtained. The obtained photon conversion efficiency shows that the hybridization of different absorber layers was achievable. It was also established that the performance efficiencies of hybrid CZTS structure in terms of optimum thickness and sandwiched Perovskite Solar cells model (FTO/ZnO/CZTS/PSCS/CZTS/HTM) has the same efficiencies for "121 configurations". On the other hand, the efficiencies of as- CZTS structures were higher than the PSCS configuration, which might be due to SCAPS-1D as it was originally designed for Thin Films Solar cells.
更多
查看译文
关键词
CZTS, hybrid, efficiency, modeling, thin film, solar cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要