Modeling Integrated Power and Transportation Systems: Impacts of Power-to-Gas on the Deep Decarbonization

IEEE Transactions on Industry Applications(2022)

引用 18|浏览38
暂无评分
摘要
The deployment of renewable energy sources, power-to-gas (P2G) systems, and zero-emission vehicles provide a synergistic opportunity to accelerate the decarbonization of both power and transportation system. This article investigates the prospects of implementing hydrogen P2G technology in coupling the power system and the transportation system. A novel coordinated long-term planning model of integrated power and transportation system (IPTS) at the regional scale is proposed to simulate the power system balance and travel demand balance simultaneously, while subject to a series of constraints, such as CO2 emission constraints. IPTS of Texas was investigated considering various CO2 emission cap scenarios. Results show unique decarbonization trajectories of the proposed coordinated planning model, in which IPTS prefers to decarbonizing the power sector firstly. When the power system reaches ultralow carbon intensity, the IPTS then focuses on the road transportation system decarbonization. The results show that with the P2G system, IPTS of Texas could achieve 100% CO2 emission reductions (relative 2018 emissions level) by adding a combination of approximately 143.5 GW of wind, 50 GW of solar PV, and 40 GW of P2G systems with 2.5% renewables curtailment. The integration of the P2G system can produce hydrogen by use of surplus RES generation to meet hydrogen demand of Fuel cell electric vehicles (FCEVs) and to meet multiday electricity supply imbalances.
更多
查看译文
关键词
Capacity expansion,fuel cell electric vehicle,integrated power and transportation system,power-to-gas technology,smart charging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要