Bimetallic-reduced graphene oxide nanocomposites as a reactive counter electrodes for dye sensitized solar cells

Journal of Materials Science: Materials in Electronics(2022)

引用 2|浏览0
暂无评分
摘要
This work outlines the facile route of fabricating bimetallic (tungsten and molybdenum)-reduced graphene oxide (rGO) nanocomposites (GWMo) as an electrocatalyst for use of counter electrodes in dye-sensitized solar cells (DSSCs). Systematic investigations were carried out to determine their properties using various characterization tools. The photovoltaic and electrochemical performance of the bimetallic nanocomposites were investigated using the J–V characteristics and cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Bode-plot, respectively. The well-grounded electrocatalytic performance of the as-prepared GWMo nanocomposites provides a feasible alternative to rare earth elements (i.e. platinum) and potentially reduces the production cost of cells (DSSCs). The catalytic activity and electrical conductivity of the GWMo nanocomposites exhibit a comparable power conversion efficiency ( η ) of ~ 4.28%.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要