Lead Selenium Colloidal Quantum Dots for 400-2600 nm Broadband Photodetectors

JOURNAL OF NANOMATERIALS(2022)

引用 0|浏览11
暂无评分
摘要
By the photodetector manufactured using traditional semiconductor materials, such as HgCdTe and InGaAs, it is difficult to broaden the application range of such photodetectors due to their high cost and complex manufacturing process. PbSe colloidal quantum dots (CQDs) have the potential to shift the working range of photodetector from visible to infrared wavelength region, and it also has high photoresponsivity. Herein, we report the characterization of PbSe CQDs synthesized using a facile solution process, as well as the relationship between the size of nanocrystal and the reaction temperature. The films of PbSe CQDs are deposited using the layer-by-layer (LbL) spin-coating method, which is then used to fabricate the photoconductive device. The fabricated device is found to have an efficient response in a broad spectrum range of 400-2600 nm. The device maintains good responsivity of ~320 mA/W at room temperature. Its external quantum efficiency was quite high in the shorter wavelength infrared region, and it has approximately 14% external quantum efficiency (EQE) at 2520 nm. The device demonstrated excellent performance, confirming that PbSe colloidal quantum dots is a promising material for future broadband spectrum photodetectors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要