Characterisation of a Platelet Rich Fibrin Membrane and Formation of an Autologous Fibrin Mesh

BRITISH JOURNAL OF SURGERY(2021)

引用 0|浏览2
暂无评分
摘要
Abstract Aim Platelet-rich fibrin (PRF) is a three-dimensional fibrin scaffold with associated platelets and leukocytes which releases high quantities of growth factors over a sustained period of time. PRF has shown promising clinical results in promoting wound healing and tissue regeneration. The aims of this feasibility study were to establish optimal spinning methods for production of PRF, to quantify the production of vascular endothelial growth factor (VEGF) by PRF and to explore new vehicles of clinical PRF delivery. Method Assessment of optimal production involved comparisons between Protocol 1 (EDTA bottle) and Protocol 2 (no additive) at three different centrifugation forces: 400g, 1000g and 1700g. VEGF production was analysed using ELISA with varied incubation periods and PRF plug segments. Novel methods for PRF delivery were explored using surgical sutures and a Zimmer® Skin Graft Mesher. Results Protocol 2 demonstrated shorter average time to blood draw (9.8s compared to 13.6s) and to centrifuge (25.5s compared to 33.1s) with a decreased range of values. All PRF segments exhibited a positive correlation between incubation time and amount of VEGF produced with the bottom segments producing on average more VEGF. A segment of the fibrin plug was successfully secured on a suture and meshed in a 1:1.5 ratio. Conclusions PRF production can be optimised using blood bottles with no additive and high centrifugation forces. VEGF production by PRF peaks at 120 hours with the bottom PRF segment exhibiting the highest rate of production. The first description of a PRF mesh enables new clinical applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要