Ultra-fast construction of CuBi2O4 films supported Bi2O3 with dominant (020) facets for efficient CO2 photoreduction in water vapor

JOURNAL OF ALLOYS AND COMPOUNDS(2022)

引用 11|浏览11
暂无评分
摘要
CuBi2O4/Bi2O3 thin film was synthesized on the commercial glass by a spray pyrolysis-calcination method. The monoclinic phase Bi2O3 with dominant (0 2 0) facets was grown on the surface of tetragonal phase CuBi2O4 by the temperature control of spraying process. Photocatalytic activities of the synthesized materials for CO2 reduction were measured in the presence of water vapor under visible light irradiation (lambda > 400 nm). The CO, CH4 and O-2 yields of the optimal composite film reached 247.62, 119.27 and 418.00 mu mol/m(2) after 12 h of irradiation. The composite film resisted physical damage and showed good photocatalytic activity in the cycling tests. Moreover, it was found that the types of main products changed with the light intensity and their yields varied with the light wavelength. The exposed (0 2 0) facets efficiently improved the adsorbed ability for H2O molecules. Meanwhile, the hydrophobicity of the film surface ensured that the adsorbed sites of CO2 were unoccupied by abundant H2O molecules. The S-scheme charge transfer mechanism was further confirmed by the interlaced band alignment of the CuBi2O4/Bi2O3 heterostructure and the controlled experiment with different light conditions. The results gained in this report may open up an avenue to design advanced S-scheme heterostructures with suitable transitional-metal oxides for photoreduction CO2 to solar fuels. (C) 2021 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Photocatalysis, CO2 reduction, CuBi2O4/Bi2O3, Exposed facets, S-scheme
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要